
118

Int. J. Elec&Electr.Eng&Telecoms. 2014 Maruthi Sai Bharadwaj T and N Suresh Babu, 2014

A NEW APPORACH FOR DESIGNING EFFECTIVE

FEEDFORWARD FFT ARCHITECTURE

Maruthi Sai Bharadwaj T1* and N Suresh Babu2

*Corresponding Author: Maruthi Sai Bharadwaj T � tmsbharadwaj@gmail.com

The paper present radix radix-2k module which is proposed for single-path delay feedback
(SDF) architectures, but not for feed forward ones,and even this paper deal with presents the
radix feed forward (MDC) FFT architectures. In feed forward architectures radix-2k can be used
for any number of parallel samples which is a power of two. Furthermore, both decimation in
frequency (DIF) and decimation in time (DIT) decompositions can be used. In addition to this,
the designs can achieve very high throughputs, which makes them suitable for the most
demanding applications. Indeed, the proposed radix-2k feed forward architectures require fewer
hardware resources than parallel feedback ones, also called multi-path delay feedback (MDF),
when several samples in parallel must be processed. As a result, the proposed radix-2k feed
forward architectures not only offer an attractive solution for current applications, but also open
up a new research line on feed forward structures by implemetanting the radix which is highly
reducing the complexity.

Keywords: Fast Fourier transform (FFT), Multipath delay commutator (MDC), Pipelined
architecture, Radix-2k, VLSI

INTRODUCTION

The Fourier series is a trigonometric series.
Specifically, it is a series of sinusoids (plus a
constant term), whose amplitudes may be
determined by a certain process (to be
described in the following chapters). this
compact notation cannot reveal the feedback
incredible mathematical subtlety contained

ISSN 2319 – 2518 www.ijeetc.com

Vol. 3, No. 4, October 2014

© 2014 IJEETC. All Rights Reserved

Int. J. Elec&Electr.Eng&Telecoms. 2014

within. The Fourier series, like the Taylor/
Maclauren series shown earlier functions, but
it has a different derivation and a different
purpose. Rather than being a means of
evaluating sines, cosines, etc., at a single
point, it serves as a “transformation” for the
whole of a given, arbitrary, This, then, is the
general pool that we have thrown our Fourier

Research Paper

1 M.Tech. Student, Department of ECE, Chirala Engineering College, Chirala 523155, Prakasam Dt., AP.
2 Associate Professor, Department of ECE, Chirala Engineering College, Chirala 523155, Prakasam Dt., AP.

119

Int. J. Elec&Electr.Eng&Telecoms. 2014 Maruthi Sai Bharadwaj T and N Suresh Babu, 2014

Transform into, but we are at risk here of
making the pool so obscure it will require more
definition than our definition itself. The
newcomer may well ask; “What is this
transformation you speak of?” Apparently we
are going to transform the original function into
another, different, function—but what is the new
function and why da we bother? Does the
transformed function have some special
mathematical properties? Can we still obtain
the same information provided by the original
function? The answer is yes to both of these
questions but we will come to all of that later;
for now we may say that the transform we are
referring to, in its digital form, provides a
mathematical tool of such power and scope
that it can hardly be exceeded by any other
development of applied mathematics in the
twentieth century. Function (FB) and
feedforward (FF). On the one hand, feedback
architectures are characterized by their
feedback loops, i.e., some outputs of the
butterflies are fed back to the memories at the
same stage. Feedback architectures can be
divided into single-path delay feedback (SDF)
which process a continuous flow of one sample
per clock cycle, and multi-path delay feedback
(MDF) or parallel feedback, which process
several samples in parallel. On the other hand,
feedforward architectures, also known as
multi-path delay commutator (MDC) ,do not
have feedback loops and each stage passes
the processed data to the next stage. These
architectures can also process several
samples in parallel.

In current real-time applications, the FFT
has to be calculated at very high throughput
rates, even in the range of Gigasamples per
second. These high-performance requirements

appear in applications such as orthogonal
frequency division multiplexing (OFDM) and
ultra wideband (UWB). In this context two main
challenges can be distinguished. The

first one is to calculate the FFT of multiple
independent data sequences. In this case, all
the FFT processors can share the rotation
memory in order to reduce the hardware.
Designs that manage a variable number of
sequences can also be obtained The second
challenge is to calculate the FFT when several
samples of the same sequence are received
in parallel. This must be done when the
required throughput is higher than the clock
frequency of the device. In this case it is
necessary to resort to FFT architectures that
can manage several samples in parallel.

As a result, parallel feedback architectures,
which had not been considered for several
decades, have become very popular in the last
few years Conversely, not very much attention
has been paid to feedforward (MDC)
architectures. This paradoxical fact, however,
has a simple explanation. Originally, SDF and
MDC architectures were proposed for radix-
and radix- Some years later, radix-22 was
presented for the SDF FFT as an improvement
on radix-2 and radix- 4. Next, radix-23 and
radix-24, which enable certain complex
multipliers to be simplified, were also
presented for the SDF FFT. An explanation of
radix-2k SDF architectures can be found in
Finally, the current need for high throughput has
been meet by the MDF, which includes multiple
interconnected SDF paths in parallel.
However, radix-2k had not been considered for
feedforward architectures until the first radix-
22 feedforward FFT architectures were
proposed a few years ago.

120

Int. J. Elec&Electr.Eng&Telecoms. 2014 Maruthi Sai Bharadwaj T and N Suresh Babu, 2014

In this work we present the radix-2k

feedforward FFT architectures. The proposed
designs include radix-22 , radix-23 and radix-
24 architectures. The paper shows that radix-
2k can be used for any number of parallel
samples which is a power of two. Accordingly,
radix-2k FFT architectures for 2, 4, and 8
parallel samples are presented. These
architectures are shown to be more hardware-
efficient than previous feedforward and parallel
feedback designs in the literature. This makes
them very attractive for the computation of the
FFT in the most demanding applications.

This paper is organized as follows. Section
II explains the radix-22 FFT algorithm and
Section III shows how to design radix-22 FFT
architectures. As a result, the pipelined radix-
22 feedforward FFT architectures are
presented in Section IV, where architectures
for different number of parallel samples using
DIF and DIT decompositions are proposed.
In Section V, the results are extended to radix-
2k and feedforward FFT architectures for radix-
23 and radix-24 are presented. In Section VI,
the proposed designs are compared to
previous ones and in Section VII experimental

Figure 1: Flow Graph of the 16-point Radix-2 DIF FFT

121

Int. J. Elec&Electr.Eng&Telecoms. 2014 Maruthi Sai Bharadwaj T and N Suresh Babu, 2014

results are provided. Finally, the main
contributions of this work are summarized in
Section VIII.

I. RADIX22- FFT ALGORITHM

The -point DFT of an input sequence x[n]is
defined as where

[] []
1

0

N
K

N
n

X K X n W
−

=

=∑ k = 0, 1, N – 1

()2 /j N nknk
NW e π−=

The first designed chip is an FFT processor.
The FFT processor has a central position both
in the OFDM transmitter and receiver. The FFT
is a computationally demanding operation that
requires an ASIC implementation to reach high
performance, i.e. high throughput combined
with low energy consumption

The FFT and IFFT Equations has the
property that, if

FFT(Re(xi)+ jIm(xi)) = Re(Xi)+ jIm(Xi)

IFFT(Re(Xi)+ jIm(Xi)) = Re(xi)+ jIm(xi),

where xi and Xi are N words long
sequences of complex valued, samples and
sub-carriers respectively, then

1/N * FFT(Im(Xi)+ jRe(Xi)) = Im(xi)+ jRe(xi).

Thus, it is only necessary to discuss and
implement the FFT equation. To calculate the
inverse transform, the real and imaginary part
of the input and output are swapped. Since N
is a power of two, scaling with 1/N is the same
as right shift the binary word Log2(N) bits. Even
simpler, is to just remember that the binary point
has moved log2(N) bits to the left. Not
performing the bit shift until, if ever, it is

Figure 2: Flow Graph of the 16-point Radix-22 DIF FFT

122

Int. J. Elec&Electr.Eng&Telecoms. 2014 Maruthi Sai Bharadwaj T and N Suresh Babu, 2014

necessary, which depends on how the output
from the IFFT will be used.

The lower edges of the butterflies are always
multiplied by -1. These -1 are not depicted in
order to simplify the graphs.

The numbers at the input represent the index
of the input sequence, Where as those at the
output are the frequencies, k , of the output
signal x[k]. Finally, each number, φ , in between
the stages indicates a rotation by

()2 /j N
Nw e π− ΦΦ =

As a consequence, φ = 0, samples for
which do not need to be rotated. Likewise, if
φ ε {N/4,N/2,3N/4}the samples must be rotated
by 0 , 270 , 180 , and 90 , which correspond to
complex multiplications by 1, -j, 1 and j,
respectively. These rotations are considered
trivial, because they can be performed by
interchanging the real and imaginary
components and/or changing the sign of the
data.

Radix-22 is based on radix-2 and the flow
graph of a radix-22 DIF FFT can be obtained
from the graph of a radix-2 DIF one. This can
be done by breaking down each angle, φ , at
odd stages into a trivial rotation and a non-
trivial one, φ , where φ ' = φ mod N/4, and
moving the latter to the following stage. This is
possible thanks to the fact that in the radix-2
DIF FFT the rotation angles at the two inputs
of every butterfly, φ A and φ B, only differ by 0 or
N/4. Thus, if φ A= φ ' and φ B= φ '+N/4 , the
rotation φ ' is moved to the following stage in
accordance with

where the first side

()
22 2/ 4

.
xx xj Nj j

NN NAe Be A j B e
φφ φ

⎛ ⎞′− +′ ′− −⎜ ⎟
⎝ ⎠+ = ± −⎡ ⎤⎣ ⎦

of (3) represents the computations using
radix-2 and the second one using radix-22 , A
and B being the input data of the butterfly. In
radix-2, and are rotated before the butterfly is
computed, whereas in radix-22 B is rotated by
the trivial rotation –j before the butterfly, and
the remaining rotation is carried out after the
butterfly. Consequently, rotations by φ ' can be
combined with those rotations of the following
stage. This derivation of radix- 22 from radix-2
can be observed in Figures 1 and 2 for the
particular case of N=16.

 Analogously, the radix-22 DIT FFT can be
derived from the radix-2 DIT FFT. Contrary to
DIF, for DIT the non-trivial rotations φ ' are
moved to the previous stage instead of the
following one.

DESIGNING RADIX- FFT

ARCHITECTURES

The proposed architectures have been derived
using the framework presented by M Garrido
(2009). The design is based on analyzing the
flow graph of the FFT and extracting the
properties of the algorithm. These properties
are requirements that any hardware architecture
that calculates the algorithm must fulfill. The
following paragraphs explain these properties
and how they are obtained.

The properties depend on the index of the
data, I a” b

n-1
,…..b

1
,b

0
, where (a”)will be used

throughout the paper to relate both the decimal
and the binary representations of a number.
This index is included in Figure 2 both in
decimal and in binary. On the one hand, the

123

Int. J. Elec&Electr.Eng&Telecoms. 2014 Maruthi Sai Bharadwaj T and N Suresh Babu, 2014

properties related to the butterfly indicate
which samples must be operated together in
the butterflies. This condition is b

n-s
 both for

DIF and DIT decompositions and means that
at any stage of the FFT, butterflies operate in

pairs of data whose indices differ only in bit

bn-s , where n = log2
N is the number of stages

of the FFT. In Figure 2 it can be observed that

at the third stage, s = 3 , data with indices I=12

≡ 1100 and I' =14 ≡ 1110 are processed

together by a butterfly. These indices differ in

bit b
1
 , which meets b

n-s
 , since n = log

2
N = n =

log2
16=4 and, thus, bn-s.

RADIX-22 FEEDFORWARD

FFT ARCHITECTURES

This section presents the radix- feedforward
architectures. First, a 16-point 4-parallel radix-
feedforward FFT architecture is explained in
depth in order to clarify the approach and show
how to analyze the architectures. Then, radix-

feedforward architectures for different number
of parallel samples are presented.

When N is a power of 4, i.e. N =4p, a radix-
4 FFT can be used instead of a radix-2 FFT.
With a radix-4 the computational complexity
is reduced, i.e. the numbers of complex
multiplications are reduced compared to a
radix-2 FFT. The drawback with a radix-4 is
that the butterfly structure is more complicated.
Another, better type of radix-4 is the radix-2,
there the butterflies still look like radix-2
butterflies but the number of complex
multipliers are reduced as if it were a radix-4.
Each stage in aradix-2 FFT consists of two
butterflies, one trivial multiplier, i.e.
multiplication with “j”, and one complex
multiplier that multiply data with the twiddle
factor that butterflies always operate in pairs
of samples. For instance, the pairs of data that
arrive at the upper butterfly of the first stage

Figure 3: Proposed 4-parallel Radix- feed Forward

Architecture for the Computation of the 16-point DIF FFT

124

Int. J. Elec&Electr.Eng&Telecoms. 2014 Maruthi Sai Bharadwaj T and N Suresh Babu, 2014

are: (0, 8), (1, 9), (2, 10), and (3, 11). The binary
representation of these pairs of numbers only
differ in b3 as n=4, and s=1 at the first stage ,
so the condition is fulfilled. This property can
also be checked for the rest of the butterflies
in a similar way. By particularizing this
condition for the first stage, is obtained. In the
architecture shown in Figure 3 the indices that
full fill this condition are those of the lower edge
and, thus, a trivial rotator is included at that
edge. On the other hand, the condition for non-
trivial rotations at even stages is, being for the
second stage. As for all indexed samples at
the upper edge of the second stage, this edge
does not need any rotator. Conversely, for the
rest of edges, so they include non-trivial
rotators .The rotation memories of the circuit
store the coefficients of the flow graph. It can
be seen that the coefficient associated to each
index is the same as that in the flow graph of
Figure 2. For instance, at the flow graph the
sample with index has to be rotated by at the
second stage. In the architecture shown in
Figure 3 the sample with index is the third one
that arrives at the lower edge of the second

stage. Thus, the third position of the rotation
memory of the lower rotator stores the
coefficient for the angle .Thirdly, the buffers and
multiplexers carry out data shuffling. These
circuits have already been used in previous
pipelined FFT architectures, shows how they
work .For the first clock cycles the multiplexers
are set to “0”, being the length of the buffers.
Thus, the first samples from the upper path (set)
are stored in the output buffer and the first
samples from the lower path (set) are stored
in the input buffer. Next, the multiplexer
changes to “1”, so set passes to the output
buffer and set is stored in the input buffer. At
the same time, sets and are provided in parallel
at the output .When the multiplexer commutes
again to “0”, sets and are provided in parallel.
As a result, sets and are interchanged. Finally,
the control of the circuit is very simple: As the
multiplexers commute every clock cycles and
is a power of two, the control signals of the
multiplexers are directly obtained from the bits
of a counter. Figure 5 shows the proposed
radix- feedforward architectures for the
computation of the 64-point DIF FFT. The
cases of 2-parallel, 4-parallel, and 8-parallel
samples, respectively. For this purpose, the
order of the samples at every stage has been
added at the bottom of the architectures. As
can be seen in the proposed architectures the
number of butterflies depends on to the
number of samples in parallel. The throughput
in samples per clock cycle is equal to the
number of samples in parallel , whereas the
latency is proportional to the size of the FFT
divided by the number of parallel samples.
Thus, the most suitable architecture for a given

Figure 4: Data Shuffling

125

Int. J. Elec&Electr.Eng&Telecoms. 2014 Maruthi Sai Bharadwaj T and N Suresh Babu, 2014

application can be selected by considering the
throughput and latency that the application
demands. Indeed, the number of parallel
samples can be increased arbitrarily,
which assures that the most demanding
requirements are met. Finally, the memory size
does not increase with the number of parallel
samples. For the architectures the shuffling
structure at any stage requires buffers of
length. According to this, the total sample
memory of the architectures is

2log 11
,

1
2 2 , 2

2

Nn
p L p P

n
n p n p

N
N N P

−−

+
= =

= = − = −∑ ∑

Therefore, a total sample memory of
addresses is enough for the computation of

an -point FFT independently of the degree of
parallelism of the FFT. Indeed, the total memory
of addresses that the proposed architectures
require is the minimum amount of memory for
the point parallel FFT. Sometimes input
samples are provided to the FFT in natural
order and output frequencies are also required
in natural order, Under these circumstances,
reordering circuits are required before and
after the FFT to adapt the input and output
orders For the proposed radix-feedforward
FFTs the memory requirements for natural I/O
depend on the FFT size and on the number of
parallel samples. For a parallel point FFT a
total memory of size is enough to carry out the
input reordering, whereas a total memory of
size is enough for the output reordering The

Figure 5: Proposed Radix-22 Feedforward Architectures for the Computation
of the 64-point DIF FFT. (a) 2-parallel radix-22 Feedforward FFT,

(b) 4-parallel Radix Feedforward FFT, (c) 8-parallel Radix-22 Feedforward FFT

126

Int. J. Elec&Electr.Eng&Telecoms. 2014 Maruthi Sai Bharadwaj T and N Suresh Babu, 2014

architectures must calculate rotations by W8,
which are represented by squared-shaped
rotators. Compared to the 2-parallel radix-22

feedforward architecture in Figure 5(a), the 2-
parallel radix-23 feedforward FFT in Figure
7(a) has the same number of butterflies,
rotators and total memory. However, some of
the rotators for radix-23 calculate rotations by
W

8
, which can be simplified. Likewise, the 4-

parallel radix-23 feedforward FFT in Figure
7(b) includes fewer general rotators than the
radix-22 one in Figure 5(b). The proposed
radix-24 feedforward FFT architectures for
N=256 are shown in Figure 8. The
architectures also include square-shaped
rotators, which carry out the rotations by W16.
Note that the 2-parallel radix-24 feedforward
FFT is very similar to the 2-parallel radix-22

one, with the difference that general rotators
every four stages in radix-22 are substituted
by W16 rotators in radix-24. For 4-parallel
samples, radix-24 also needs fewer general
rotators than radix-22 and radix-23.
Architectures for a higher number of samples
in parallel can also be obtained using radix-
2k. For a general case of a P-parallel radix-2k

N-point

2.logP N

feedforward FFT, the number of complex
adders is equal tothe number of general
rotators can be calculated as

and the total memory is N-P. Likewise, the

proposed approach can also be used to derive
radix feedforward architectures FFT for DIT.
Accordingly, parallel radix-feedforward
architecture for the computation of the 64-point
DIT FFT. This architecture can be compared
with the DIF version and It can be noted that
both DIF and DIT architectures use the same
number of hardware components. Nevertheless,
the layout of the components is different. For
any number of parallel samples, DIF and DIT
architectures also require the same number
of components.

EXTENSION TO RADIX-2K

As for radix-22, these properties have been
obtained directly from the flow graphs of the
algorithms. The conditions for butterflies are
the same for all stages of the FFT, whereas
the conditions for rotations depend on the
stage. Rotations are classified into trivial (T),
non-trivial (NT), and rotations by W8 or W16.
Rotations W8 by W16 and are not-trivial, but
include a reduced set of angles. According to
(2), rotations by W8 only consider angles that
are multiples of Π/4, whereas W16 only includes
multiples of Π/8. This allows for the
simplification of the rotators that carry out the
rotations. For this purpose, different techniques
have been proposed in the literature. They
include the use of trigonometric identities, the
representation of the coefficients in canonical
signed digit (CSD) and the scaling of the
coefficients. Finally, in the table i ∈ z and, thus,
for radix-2k the type of rotation repeats every k
stages. Figure 7(a) and (b) show the proposed
radix-23 feedforward architectures,
respectively for 2 and 4 samples in parallel. It
can be observed that radix-23 feedforward
architectures only require general non-trivial
rotators every three stages. Additionally, the

127

Int. J. Elec&Electr.Eng&Telecoms. 2014 Maruthi Sai Bharadwaj T and N Suresh Babu, 2014

Figure 6: Proposed 4-parallel radix- 22 Feedforward Architecture
for the Computation of the 64-point DIT FFT

Figure 7: Proposed Radix-23 Feedforward Architectures for the
Computation of the 64-point DIF FFT

(a) 2-Parallel Radix-23 Feedforward FFT (b) 4-Parallel Radix-23 Feedforward FFT

throughput is always equal to the number of
parallel samples, P, and the latency is N/P. Note
that apart from general rotators, the
architectures must include rotators that
calculate the simpler non-trivial rotations by WL,
where L=2k is the number of angles of the
kernel. These kernels are W

8
 and W

16
,

respectively for radix-23 and radix-24, which
allow for efficient hardware implementations.
Nevertheless, if k is larger, radix-2k

architectures include WL kernels with larger
number of angles. As a result, the
implementation of these rotators becomes
more complicated, being necessary to resort
to general rotators in most cases. Note also
that the proposed radix-2k feedforward FFT
architectures can be used for any number of
parallel samples, P=2P. Conversely, conventional
feedforward architectures based on radix-r
are only for r≤P.

128

Int. J. Elec&Electr.Eng&Telecoms. 2014 Maruthi Sai Bharadwaj T and N Suresh Babu, 2014

COMPARISON AND ANALYSIS

One of the more important decisions designing
a fixed-point pipelined FFT processor regards
the word length in the architecture, since it will
affect the precision, number of gates, and
power consumption. The most straightforward
implementation is to have the same word
length throughout the whole FFT processor.
However, this will give a poor performance per
kbit memory since the data has to be shifted
down before each butterfly, to avoid overflow.
As there are ten butterflies in a 1024 point FFT,
the ten least significant bits are lost if a fixed
word length data path is used. The proposed
structures to other efficient pipelined
architectures for the computation of an N-point
FFT. The architectures are classified into 2-
parallel, 4-parallel, and 8-parallel ones. The
first two columns indicate the type of
architecture and the radix. The rest of the table
shows the trade-off between area and
performance. On the other hand, area is

measured in terms of the number of rotators,
adders and memory. As different applications
demand different input and output orders,
circuits for data reordering before and after
the FFTs are not considered in the
comparison. Rotators are required for non-
trivial rotations. In Table 1 they are classified
into rotators for W8 and W16 , and general
rotators for other non-trivial rotations. The total
number of rotators is also included. On the
other hand, performance is represented by
throughput and latency. The latency is defined
as the number of clock cycles that the
architecture needs to process an input
sequence, considering that it receives a
continuous flow of data. Meanwhile, the
throughput indicates the number of samples
per clock cycle that are processed. In all
architectures this throughput is equal to the
number of samples that are processed in
parallel. Among 2-parallel architectures, the
proposed radix-2k feedforward FFTs require

Figure 8: Proposed Radix-24 Feedforward Architectures for the Computation
of the 256-point DIF FFT, (a) 2-parallel Radix-24 Feedforward FFT,

(b) 4-parallel Radix-24 Feedforward FFT

129

Int. J. Elec&Electr.Eng&Telecoms. 2014 Maruthi Sai Bharadwaj T and N Suresh Babu, 2014

the same number of rotators, adders and
memory as the radix-2 feedforward FFT.
However, some of the rotators in radix-23 and
radix-24 FFTs can be simplified, as they only
have to calculate rotations by W8 and W16.
Compared to previous radix-24 parallel
feedback architectures, the proposed radix-
24 designs save 50% of the adders and reduce
the memory requirements, and proposed
architectures with respect to parallel feedback
ones. Specifically the proposed radix-22

architecture saves 25% of the total number of
rotators. Furthermore, the proposed 4-parallel
radix-24 feedforward FFT saves 50% of the
adders and 25% of the W16 rotators with
respect to radix-24 parallel feedback
architectures. Finally, the proposed 8-parallel
radix-2k architectures improve on all previous
designs in the literature. The proposed 8-
parallel radix-22 feedforward FFT saves 25%

of the rotators with respect to radix-2
feedforward FFTs, and 50% of the adders and
25% of the rotators with respect to feedback
architectures. The proposed 8-parallel radix-
23 feedforward FFT reduces the memory
requirements and latency of previous radix-8
feedforward FFTs, and the proposed 8-parallel
radix-24 feedforward FFT saves 12% of the
W16 rotators and 50% of the adders with
respect to radix-24 parallel feedback designs.

EXPERIMENTAL RESULTS

The presented architectures have been
programmed for the use in field-programmable
gate arrays (FPGAs). The designs are
parameterizable in the number of points , word
length, and number of The results for 4-parallel
pipelined architectures are shown in Figure
10(a). In the figure, the numbers next to the lines
indicate the amount of DSP48E slices that

Figure 9: RTL Schematic of Radix DFFT

130

Int. J. Elec&Electr.Eng&Telecoms. 2014 Maruthi Sai Bharadwaj T and N Suresh Babu, 2014

Figure 10: Area of 4-parallel and
8-parallel pipelined FFT architectures

(a) 4-parallel pipelined FFT architectures
(b) 8-parallel pipelined FFT architectures

(c) 8 bit result

each architecture requires. It can be observed
that the area and performance of the proposed
p-parallel n-pointradix-22 feedforward fft
architectures for 16 bits. proposed radix-22

architectures require less area than previous
designs for any FFT size, N. This improvement
increases with the size of the FFT. For 8-
parallel samples, Figure 9(b) shows that the
proposed designs also improve over radix-2
and radix-4 architectures, and the larger N the
larger the savings. Architectures that use radix-
8 need less DSP48E blocks at the cost of a
significant increase in the number of slices.
The throughput of the proposed designs to
other 4-parallel and 8-parallel pipelined FFTs.
It can be observed that, the proposed designs
achieve the highest throughputs both for 4-
parallel and 8-parallel designs. Indeed, even
higher throughput can be achieved by
resorting to 16-parallel radix-22 feedforward
architectures.

Table 1: Comparison of the Proposed Radix-2k Feedforward Architectures

131

Int. J. Elec&Electr.Eng&Telecoms. 2014 Maruthi Sai Bharadwaj T and N Suresh Babu, 2014

CONCLUSION

In the VLSI design the power delay and area

are grave concern, here in this projects also

depends based up on these factors, that is

instead of feedback, feedforward (MDC)

architectures are used. It is shown that

feedforward structures are more efficient than

feedback ones when several samples in

parallel must be processed. In feedforward

architectures radix-2k can be used for any
number of parallel samples which is a power
of two, the number of parallel samples can be
chosen arbitrarily depending of the throughput
that is required. Internally both DIF and DIT
decompositions can be used. finally compare
to feedback architectures, feedforward(MDC)
architecture takes less samples , low area
consumption and delay. With the existing one
it is more speed. It possible to obtain
throughputs of the order of G Samples(s) as
well as very low latencies. below results shows.
Throughput of 4-parallel and 8-parallel
pipelined FFT architectures

ACKNOWLEDGMENT

The authors would like to thank Dr. R. Conway
for his valuable suggestions about the
presentation of this work.

REFERENCES

1. Chang Y N (2008), “An efficient VLSI
architecture for normal I/O order pipeline
FFT design”, IEEE Trans. Circuits Syst.
II, Exp. Briefs, Vol.55, No. 12, pp. 1234–
1238.

2. Cheng C and Parhi K K (2007), “High-
throughputVLSI architecture for

Figure 10 (Cont.)

Figure 11: Throughput of
4-parallel and 8-parallel

Pipelined FFT Architectures

132

Int. J. Elec&Electr.Eng&Telecoms. 2014 Maruthi Sai Bharadwaj T and N Suresh Babu, 2014

10. Garrido, Parhi K K, and Grajal J (2009),
“A pipelined FFT architecturefor real-
valued signals”, IEEE Trans. Circuits
Syst. I, Reg. Papers, Vol. 56, No. 12, pp.
2634–2643.

11. Gold B and Bially T (1973), “Parallelism
in fast Fourier transformhardware”, IEEE
Trans. Audio Electroacoust., Vol. 21, No.
1, pp. 5–16.

12. Groginsky H L and Works G A (1970), “A
pipeline fast Fourier transform”, IEEE
Trans. Comput., Vol. C-19, No. 11, pp.
1015-1019.

13. He S and Torkelson M (1998), “Design
and implementation of a 1024-
pointpipeline FFT processor”, in Proc.
IEEE Custom Integr. Circuits Conf., pp.
131-134.

14. Johnston J A (1983), “Parallel pipeline
fast Fourier transformer”, IEE Proc.F
Commun. Radar Signal Process., Vol.
130, No. 6, pp. 564–572.

15. Lee J, Lee H, Cho S I, and Choi S S
(2006), “A high-speed, low-complexity-
radix-FFT processor for MB-OFDM UWB
systems”, inProc. IEEE Int. Symp.
Circuits Syst., pp. 210–213.

16. Li N and van der Meijs N P (2009), “A
radix based parallel pipeline FFT
processor for MB-OFDM UWB system”,
in Proc. IEEE Int. SOCConf., pp. 383–
386.

17. Li Y W , Xu H, Fan W, Chen Y, and Zeng
W (2010), “A 128/256-point pipelineFFT/
IFFT processor for MIMO OFDM system
IEEE 802.16e”, in Proc. IEEE Int. Symp.
Circuits Syst., pp. 1488–1491.

FFTcomputation”, IEEE Trans. Circuits
Syst. II, Exp. Briefs, Vol. 54, No. 10, pp.
863–867

3. Cho S I, Kang K M and Choi S S (2008),
“Implemention of 128-pointfast Fourier
transform processor for UWB systems”,
in Proc. Int.Wirel. Commun. Mobile
Comput. Conf., pp. 210–213.

4. Cooley J W and Tukey J W (1965), “An
algorithm for the machine calculation of
complex Fourier series”, Math. Comput.,
Vol. 19, pp. 297–301.

5. Cortés A, Vélez I and Sevillano J F
(2009), “Radix FFTs: Matricial
representation and SDC/SDF pipeline
implementation”, IEEE Trans. Signal
Process., Vol. 57, No. 7, pp. 2824–2839.

6. Despain A M (1974), “Fourier transform
computers using CORDIC iterations”,
EEE Trans. Comput., Vol. C-23, pp. 993-
1001.

7. Garrido M (2009), “Efficient hardware
architectures for the computation ofthe
FFT and other related signal processing
algorithms in real time”, Ph.D.
dissertation, Dept. Signals, Syst.,
Radiocommun., Univ. PolitécnicaMadrid,
Madrid, Spain.

8. Garrido M, Grajal J, and Gustafsson O
(2011), “Optimum circuits for bit reversal,”
IEEE Trans. Circuits Syst. II, Exp. Briefs,
Vol. 58, No. 10, pp.657–661.

9. Garrido M, Gustafsson O, and Grajal J
(2011), “Accurate rotations based
oncoefficient scaling”, IEEE Trans.
Circuits Syst. II, Exp. Briefs, Vol. 58, No.
10, pp. 662–666.

133

Int. J. Elec&Electr.Eng&Telecoms. 2014 Maruthi Sai Bharadwaj T and N Suresh Babu, 2014

18. Lin Y W and Lee C Y (2007), “Design of
an FFT/IFFT processor forMIMO OFDM
systems”, IEEE Trans. Circuits Syst. I,
Reg. Papers, Vol. 54, No. 4, pp. 807–
815.

19. Liu H and Lee H (2008), “A high
performance four-parallel 128/64-point
radix- FFT/IFFT processor for MIMO-
OFDM systems”, in Proc.IEEE Asia
Pacific Conf. Circuits Syst., pp. 834–
837.

20. Liu L, Ren J, Wang X, and Ye F (2007),
“Design of low-power, 1 GS/sthroughput
FFT processor for MIMO-OFDM UWB
communication system”, in Proc. IEEE
Int. Symp. Circuits Syst., pp. 2594–2597.

21. McClellan J H and Purdy P J (1978),
“Applications of digital signal
processingto radar”, in Applications of
Digital Signal Processing, Englewood
Cliffs, NJ, Prentice-Hall, Ch. 5.

22. Milder P A , Franchetti F, Hoe J C, and
Püschel M (2008), “Formal datapath
representation and manipulation for
implementing DSP transforms”, inProc.
IEEE Design Autom. Conf., pp. 385–
390.

23. Oppenheim A V and Schafer R W (1989),
Discrete-Time Signal Processing,
Englewood Cliffs, NJ, Prentice-Hall.

24. Qureshi F and Gustafsson O (2011),
“Low-complexity constant multiplicand
based on trigonometric identities with
applications to FFTs”, IEICE Trans.

Fundamentals, Vol. E94-A, No. 11, pp.
324–326.

25. Sánchez M A, Garrido M, López M L and
Grajal J (2008), “ImplementingFFT-based
digital channelized receivers on FPGA
platforms”, IEEE Trans. Aerosp.
Electron. Syst., Vol. 44, No. 4, pp. 1567–
1585.

26. Swartzlander E E, Young W K W, and
Joseph S J (1984), “A radix 4delay
commutator for fast Fourier transform
processor implementation”, IEEE J.
Solid-State Circuits, Vol. 19, No. 5, pp.
702–709.

27. Tang S N, Tsai J W and Chang T Y (2010),
“A 2.4-GS/s FFT processor for OFDM-
based WPAN applications”, IEEE Trans.
Circuits Syst. I, Reg. Papers, Vol. 57, No.
6, pp. 451–455.

28. Wold E H and Despain A M (1984),
“Pipeline and parallel-pipeline FFT
processors for VLSI implementations”,
IEEE Trans. Comput., Vol. C-33, No. 5,
pp. 414-426.

29. Xudong W and Yu L (2009), “Special-
purpose computer for 64-point FFTbased
on FPGA”, in Proc. Int. Conf. Wirel.
Commun. Signal Process., pp. 1–3.

30. Yang L, Zhang K, Liu H, Huang J and
Huang S (2006), “An efficient locally
pipelined FFT processor”, IEEE Trans.
Circuits Syst. II, Exp. Briefs, Vol. 53, No.
7, pp. 585-589.

